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It is suggested that sound wave propagation along stochastic magnetic field lines contributes to 
particle transport, described by a quasilinear diffusion coefficient D = D, c,, where D,,, is the 
magnetic field line diffusion coefficient [ NucI, Fusion 6,297 ( 1966) I. In this calculation, the 
perturbed magnetic field SB is taken to be specified, either due to global modes or due to 
external perturbations, such as toroidal ripple, divertor coils, or an ergodic magnetic limiter. 
The transport, which proceeds by the propagation of electrostatic sound waves along the 
stochastic field lines, is sot intrinsically ambipolar. The importance of this process is that it 
represents the shorting out of a radial electric field in the presence of SB,, and therefore 
provides a mechanism for damping of plasma rotation, and may therefore be an important 
factor for L-H transition in tokamaks. This part of particle transport and momentum 
transport are therefore related and are of the same order of magnitude. However, experiments 
(without an ergodic magnetic limiter) appear to indicate that another source of particle 
transport, perhaps by EXB advection due to electrostatic modes, can dominate the particle 
transport due to sound wave propagation along stochastic field lines, 

1. INTRODUCTION 
The subject of energy confinement in a tokamak with 

stochastic field lines, or destroyed magnetic surfaces, has 
been of interest for a long period of time.‘-’ In the collision- 
less limit, the heat transport is given’ by a quasilinear diffu- 
sion coefficient DzD, v,, where D, is the magnetic field 
line diffusion coefficient’ and U, is the electron thermal 
speed. This thermal diffusion coefficient represents the free 
streaming of electrons along the stochastic, or chaotic, field 
lines. It has been recognized iSG9 that particle transport, on 
the other hand, must be influenced by ambipolar fields, since 
ui gv,. 

In this paper we suggest that particle transport occurs 
via sound wave propagation along the stochastic field lines. 
Indeed, in a fully ionized plasma in a constant magnetic 
field, a density perturbation along the field lines is transport- 
ed by sound wave propagation. (Here and throughout, we 
will assume that the particle transport is slower than the 
thermal transport for electrons and ions, so that each species 
can be taken to be isothermal.) This process is the analog to 
ambipolar diffusion in a Lorentz gas, in which momentum is 
exchanged with neutrals, as we shall discuss. In the present 
case, collisions conserve momentum, but momentum is not 
conserved because the waves involve ion inertia. 

Because this process does not conserve local particle 
momenta, it is not intrinsically ambipolar. By intrinsically 
ambipolar we mean that the plasma maintains quasineutrali- 
ty without the buildup of an ambipolar electric field. In Ref. 
10 it was argued that transport due to stochastic magnetic 
field lines is intrinsically ambipolar if the magnetic perturba- 
tions are sufficiently localized that momentum is locally 
conserved. In the process we are describing, the ambipolar 
electric field associated with the transport is precisely the 
electrostatic field of the waves. Furthermore, since the waves 
a)Permanent address: Space Research Institute, Moscow, Russia. 

are electrostatic the problem simplifies considerably: we 
take the magnetic field to be given, either due to global mag- 
netohydrodynamic (MHD) modes or due to external per- 
turbations such as toroidal ripple, divertor coils, an ergodic 
magnetic limiter, or other field errors. 

For our model, we take an equilibrium with a three- 
dimensional magnetic field B = B, + 6B, where B, is axi- 
symmetric and SB represents all the symmetry breaking per- 
turbations. These magnetic perturbations are assumed to 
destroy the flux surfaces, at least in some region. We also 
take the current densityj, temperatures T,, Ti to be uniform. 
Here, z is taken to be the toroidal direction. Then a MHD 
resistive equilibrium is possible. That is, we have 

jXB=O, 
B*Vj, = 0, 

and 
2% = qiz, (1) 

where E, is the toroidal electric field (we use cylindrical 
coordinates r&z with 0 <Z-C 27rR) and the resistivity 1;1 is 
taken to be uniform, consistent with T, = const. In this equi- 
librium, EZgZ is the full electric held (there is no radial eiec- 
tric field E,.) and neither species rotates, v,~ = vLe = 0. In 
genera1 geometries it has been shown” that such three-di- 
mensional Ohmic states with chaotic field lines must have 
variation of the electric and magnetic fields on a resistive 
time scale. However, for tokamak geometry this resistive 
time scale variation is even slower because of geometric ef- 
fects and, in fact, does not show up in the reduced MHD 
equations. ” This variation can therefore be ignored for our 
purposes. 
II. THEORETICAL MODEL AND RESULTS 

To investigate the evolution of a small density perturba- 
tion, we assume an electrostatic mode and linearize about 
this equilibrium to obtain 
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Ti Vii 
m$= -eV$+efXB--, 

T, Vii 
O=eV$-e0,XB--, 

n (2b) 

aii -= - nV*f. 
at (2c) 

The component of the electron equation of motion, Eq. 
(2b), parallel to B gives B*V(e? - T,Wn) = 0. By the as- 
sumption of chaotic field lines (i.e., B.VQ = 0 implies 
Q = const throughout the plasma), we find that the elec- 
trons are adiabatic e&T, = ii/n. Substituting again in Eq. 
(2b), we find that v,~ = 0, i.e., the electrons do not rotate. 
(The ExB and diamagnetic drifts cancel.) Also, the per- 
pendicular component of Eq. (2a) (without the inertia term 
for w/w,~ ( 1, where wci = eB /m ) gives 

T, = 
(Te + Ti)BXVfi 

enB 2 (3) 

That is, the ions rotate due to ExB and diamagnetic drift, 
which are additive. The term - nV*v, z - n( 1 
+ T,/T,)V(1/B2)*BXV40ntherightinEq. (2c)isnegli- 

gible because we are ignoring toroidal curvature effects. 
Therefore, we obtain, from the parallel component of Eq. 
(2a) and from Eq. (2c), 

% nm at = - n&-V? - Tib*Vii = - &Vii, (4a) 

aii nV+ = - n&V x=- Ii (4b) 

where B = IBI, 6 = B/B, and T = T, + Ti. In (nonintrin- 
sic) ambipolar diffusion in a Lorentz gas, the equation corre- 
sponding to Eq. (4a) is 0 = - n&V? - Ti&Vfi 
- nv,,m,fi,, . The momentum transferred to the neutrals by 

the ion-neutral drag exactly corresponds to the acceleration 
of the ions in Eq. (4a). Clearly, the density gradient couples 
to ion flow mediated by the electrostatic potential in both 
cases, making the process nonintrinsically ambipolar. 

The polarization drift vl; = - (m/eB ‘) (J/c%)V,$ 
leads to finite Larmor radius (FLR) and electromagnetic 
effects, which are negligible for the following reasons: the 
term nV$’ in Eq. (4b) gives, with e&T, = ii/n, a factor 
(1 + k :p:) on the left in (4b), where pf = ( T,/mi)/&. 
We will assume that k, is small enough for such FLR effects 
to be negligible. The quasineutrality condition (or vorticity 
equation) V+f = - V.(j,,/ne) = - (l/ne)B*V(&/B), 
gives 

This implies that there is coupling to the AlfvCn wave. How- 
ever, the magnetic perturbation B induced by?; does not 
enter on the right in Eq. (4a) because there is no equilibrium 
density gradient. Also, the term e cX4,, /at in the component 
of Eq. (2b) parallel to B is of order P-cf/v: relative to 
e VII 4. 

Again, because we are ignoring toroidal curvature and 
finite aspect ratio effects, we can take B to be constant and 
find 

___ -“fi&,, a611 _ 
at n 
aii -= - 
at n&VB,, . 

Then, writing u = B,, /c, + ii/n, u = B,, /c, - ii/n, we obtain 

$ + c,ihu = 0, 
au -- c,Lvu = 0. (6) at 

Thus u represents a wave propagating to the right 
(w = k,, c, ) and u represents a wave propagating to the let 
(w = - k,, c, ). Also note that the advective “flow” u, =c, b 
is divergence-free for this equilibrium. 

Applying quasilinear theory to the evolution of (u) and 
(u), where (u) = (4&R) -‘Jud0dz, wefind 

D=D,c,, (7) 
where D, = (SB /B)21c is the magnetic field line diffusion 
coefficient,’ with correlation length I, -qR. A similar equa- 
tion holds for (v). This diffusion coefficient for particle 
transport is of order dx smaller than that for collision- 
less electron thermal conduction,’ but comparable to that 
for ion thermal conduction, i.e., ui -c, if T, - Ti. [ Semanti- 
cally it would perhaps be clearer to call the process described 
by Eqs. (5)-( 7) density transport rather than particle trans- 
port since it proceeds by wave propagation rather than actu- 
al transfer of particles. ] Of course, the evolution of u and U, 
like the evolution of any passive scalar, is not fully described 
by quasilinear theory. The actual behavior involves the de- 
velopment of fine scales perpendisular to B as the quantities 
are “advected” along u, = & c,b. However, dissipative ef- 
fects, such as viscosity in Eq. (4a), cause strong decay of the 
high k Fourier components of II and u leading to overall 
decay. (We assume that dissipation is sufficient that 
k :pz < 1 holds. ) The quasilinear coefficient (7) describes 
only the nondissipative early time behavior as the short 
scales are being developed and U, u are propagating along the 
chaotic field lines throughout the plasma. 

If TJT; is of order unity, sound waves in a collisionless 
plasma are, of course, Landau damped with wi -w, - k,, c,. 
If we take a representative field line that wanders over the 
minor radius a (or some fraction thereof), the length of this 
field line is L -a*/D, . Therefore a typical initial perturba- 
tion ii initialized constant along the magnetic surfaces corre- 
sponding to the axisymmetric field B, will have 

Landau damping, then, will be negligible if vii > k,, c,, or 

In terms of ;li -c,/yii, the condition is 

~>(gpy. (10) 
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The mean-free path iii may be comparable to qR (Ai - lo3 
cm for typical edge parameters Ti = 50 eV, n = 2 X lo’*) 
and scales as Tf/n. Therefore this condition is easily satis- 
fied. On the other hand, even if this inequality is not satisfied, 
the decay rate from Eq. (7) is y = Dmcs/a2, which is com- 
parable to oi - k,, c,, by Eq. (8). Therefore, even in the colli- 
sionless regime, Landau damping and damping by chaotic 
mixing are comparable. Note further that even if Landau 
damping dominates, it contributes to radial transport of den- 
sity only because of the presence of chaotic field lines. 

The initial density perturbation ii is accompanied by an 
initial electrostatic potential perturbation $ = T,fi/en, and 
therefore with a radial electric field E,. The diffusion process 
of Eq. (7) therefore also represents the effect of shorting out 
this radial electric field by the presence of stochastic field 
lines. The primary shorting is due to electrons and occurs on 
an wP - ’ time scale. On longer time scales, electrons become 
adiabatic (e$/T, = ii/n) and the remaining potential is 
shorted out by the sound wave propagation. (If the density ii 
is specified by a particle flux from the boundary of the sto- 
chastic region, rather than as an initial perturbation, this 
effect represents only a tendency to short out Er and flatten 
the density.) Furthermore, since C$ is associated with an ini- 
tial rotation [ Eq. (3) 1 the diffusion coefficient (7) repre- 
sents a rotation damping effect. (Here it is important that 
the magnetic perturbation SB be due to external coils or due 
to modes locked to external perturbations: a propagating 
magnetic perturbation would provide damping of rotation 
relative to a rotating frame.) This effect is of potential im- 
portance because it can balance the rotation generation 
mechanisms of asymmetric transport ‘3~‘4 or Reynolds 
stress,‘5-‘7 which have been invoked to explain the spin-up 
of H-mode discharges. The present rotation damping mech- 
anism differs from the other plausible rotation damping ef- 
fect, namely magnetic pumping, in the following ways: our 
mechanism shorts out the electrostatic potential $ and there- 
fore damps all the perpendicular motion fri of Eq. ( 3 ) . That 
is, this rotation damping mechanism, which does not depend 
upon inhomogeneities in B, operates equally on poloidal and 
toroidal flows. The parallel velocity 8,, propagates by means 
of the sound waves and eventually is redistributed. That is, 
ii,, does not decay, in agreement with conservation of cross 
helicity 1v.B d 3x in an isothermal plasma.‘* On the other 
hand, magnetic pumping, which is a toroidal effect, damps 
out only poloidal rotation” and leaves toroidal rotation. 
From Eq. (7)) we estimate the rotation damping rate in our 
model to be 

ys -D,c,/a’ 

SB -- 
( > 

2 qRcs 
B 7’ 

The magnetic pumping rate is of order I9 

(111 

yp -Yiit for vii < U,/qR (Ri > qR) 

- vf/q2R 2~ii, for vii > vi/qR. (12) 
For the low collisionality case, the condition yP > yS is exact- 
ly the condition that Landau damping be negligible. How- 
ever, for the high collisionality case, the condition 7/s > y, 

can be satisfied, with Eq. (9) easily satisfied (see Fig. 1). 
Because, as we have noted, Ri/qR has a strong scaling Tf/n, 
and because yP peaks at vii - ui/qR, we conclude that mag- 
netic pumping will dominate only over a small region, and 
the mechanism of chaotic sound wave propagation will 
dominate over a much larger region, but with Landau damp- 
ing contributing to the decay in the low collisionality regime. 

The particle transport described by Eq. ( 7) is only part 
of the total particle loss. Note, in fact, that the energy trans- 
port due to stochastic field lines’ is much larger than the 
particle transport given by Eq. (7), by a factor 
u,/c, -,/x. However, experiments show that the ener- 
gy confinement time is shorter than the particle confinement 
time, but by a much smaller factor.” This suggests that an- 
other source of particle transport, for example EXB advec- 
tion due to electrostatic modes, typically dominates that due 
to chaotic sound wave propagation. This may be true for 
energy transport also. If this is the case, then the importance 
of sound propagation along chaotic field lines (in tokamaks 
with typical field errors, e.g., without an ergodic magnetic 
limiter) is the shorting of the radial electric field and damp- 
ing of rotation. Any intrinsically ambipolar part of trans- 
port, such as electrostatic ExB advection, cannot contrib- 
ute to these effects. 

This theory of rotation damping and particle transport 
effect we have described can be tested in plasmas in which 
the perturbing field SB can be varied, for example in toka- 
maks with an ergodic magnetic limiter. Indeed, it has been 
observed2’ on TEXT that the radial electric field E, is nega- 
tive, except very near the edge. The area of positive E, at the 
edge increases as the current in the ergodic magnetic limiter 
increases, destroying the magnetic surfaces near the edge. 
This sign of E, is consistent with having adiabatic electrons 
and a negative density gradient in the stochastic region. In 

Y 

Vi/qR vii 

FIG. 1. A comparison of rotation damping by chaotic sound wave propaga- 
tion [ yY given by Eq. ( 11) I with magnetic pumping [ yP given by Eq. ( 12) 1. 
The condition for Landau damping to be negligible is v,, > yV. 
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fact, the magnitude of the edge radial electric field has been 
observed to be consistent with adiabatic electrons,2”22 in 
qualitative agreement with the theory. 

ACKNOWLEDGMENTS 

We wish to thank J. Drake, R. Kleva, E. Ott, and M. N. 
Rosenbluth for valuable discussions. 

This work was supported by the U.S. Department of 
Energy. 

I A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40,38 (1978). 
‘J. A. Krommes, C. Oberman, and R. G. Kleva, J. Plasma Phys. 30, 11 

(1983). 
“G. Laval, in TheotyofFusion Plasmas, edited by A. Bondeson, F. Troyon, 

and E. Sindoni (Association EURATOM, Varenna, 1987). 
‘M. Isichenko. Plasma Phvs. Controlled Fusion 33,795 (1991). 
‘M N. Rosenbluth, R. Z. Sagdeev, J. B. Taylor, and G. M. Zaslavsky, 

Nucl. Fusion 6, 297 (1966). 
‘M. F. Xia and H.-L. Hu, Chin. Phys. 2, 25 (1982). 
‘M. F. Xia, Chin. Phys. 2, 638 (1982). 
8 R. W. Harvey, M. G. McCoy, J. Y. Hsu, and A. A. Mirin, Phys. Rev. Lett. 

47, 102 (1981). 
9T. Yamagishi, M. S. Chu, D. K. Bhadra, and F. L. Hinton, J. Nucl. Mater. 

128 & 129, 118 (1984). 
“W. Manheimer and I. Cook, Comments Plasma Phys. 5, 9 ( 1979). 
“J. M. Finn, R. Nebel, and C. Bathke, to appear in Phys. Fluids B. 
‘*H. R. Strauss. Phvs. Fluids 19. 134 ( 1976). 
I3 T. E. Stringer; Phys. Rev. Let;. 22, i770 (-1969). 
I4 A. B. Hassam, T. M. Antonsen, Jr., J. F. Drake, and C. S. Liu, Phys. Rev. 

Lett. 66, 309 (1991). 
‘sJ. Lighthill, Waues in Fluids (Cambridge U.P., Cambridge, 1978). 
“P. H. Diamond and Y. B. Kim, Phys. Fluids B 3, 1626 (1991). 
17P. N. Guzdar, J. F. Drake, A. B. Hassam, D. McCarthy, and C. S. Liu, 

Proceedings of the Energy Research Power Super Computer Users Sympo- 
Gum, Gaithersburg, Maryland (Department of Energy, Washington, 
DC, 1991), Paper 15; J. F. Drake, J. M. Finn, P. Guzdar, V. Shapiro, V. 
Shevchenko, F. Waelbroeck, A. B. Hassam, C. S. Liu, and R. Sagdeev, 
Phys. Fluids B 4,488 (1992). 

“5. M. Finn and T. M. Antonsen, Phys. Fluids 26,354O (1983). 
19A. Hassam and R. Kulsrud, Phys. Fluids 21, 2271 (1978); B. J. Green, 

Nucl. Fusion 12, 475 (1972); F. L. Hinton and R. D. Hazeltine, Rev. 
Mod. Phys. 48,239 ( 1976). 

*OR. J. Goldston, H. Biglari, G. Hammett, D. Meade, S. Yoshikawa, and M. 
ZamstortT, Bull. Am. Phys. Sot. 34, 1964 (1989). 

“X. Z. Yang, B. Z. Zhang, A. J. Wootton, P. M. Schoch, B. Richards, D. 
Baldwin, D. L. Brower, G. G. Castle, R. D. Hazeltine, J. W. Heard, R. L. 
Hickock, W. L. Li, H. Lin, S. C. McCool, V. J. Simcic, Ch. P. Ritz, and C. 
X. Yu, Phys. Fluids B 3, 3448 ( 199 1) . 

‘* A. J. Wootton (private communication, 199 1) . 

1155 Phys. Fluids B, Vol. 4, No. 5, May 1992 Finn, Guzdar, and Chernikov 1155 

Downloaded 06 Feb 2011 to 203.230.125.100. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions


